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Griffiths 2.5

Because the Z axis is aligned with the center of the circle, E, (0, 0, Z) = Ey (0, 0, Z) = 0 because for each

charge on the circle, there is the same charge on the opposite side of the circle whose contribution
cancels after integrating to obtain these components. Now for each location Z,
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Notice at large Z, the field decreases as1/ r? as it should. The field also vanishes on the plane of the
loop.
Griffiths 2.6

Simply integrate the result of the previous problem overr .
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For R > Z the field must look like the infinite plane result obtained from Gauss’s law. It does! In the
other limit
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Far enough away from the disc, the field reduces to that of a point charge!

Griffiths 2.9
Using the spherical divergence on the front cover of Griffiths
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We can determine the charge inside each radius either by integrating the charge density with the
spherical volume element, or by Gauss’s law. Integrating using the volume element yields

2z
p(r')r'*dr'd cos@de

0

—_—

Qinsice (I’) = j;

LN

= 47r5kgoj r'dr’ = 4zke,r®
0

Gauss’s Law yields
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Of course, the results are the same.



Griffiths 2.18

For an infinite slab there is only field in the Y -direction. Using Gauss’s Law using a cube of size 2y

centered on the origin of the figure, and the fact that by symmetry Ey (y = —|y|) = —Ey (y = +|y|)
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The field becomes uniform outside of the slab! The expression for the final answer may be a bit
confusing as there is no 2 as in the result for an infinite plane of charge. Remember though that the

“effective” surface density is 0, = p2d by the dimensions that Griffiths used to define the problem.

Thus Ey =0, | 2&, DOES apply for this problem too!

Here is a plot
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The significant things to notice are the field vanishes on the x-z plane, as it must by symmetry, it grows

linearly with the displacement from the plane, and it saturates to a constant value once |y| >d.



Griffiths 2.23

By Gauss’s law applied to a cylinder of radius S and length L
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Defining the zero of the potential is tricky because the field blows up at the origin and does not
integrate to a convergent integral at infinity. However, aside from these problem locations, a potential

may be defined by choosing a radius S, for the zero location and integrating
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Griffiths 2.22 (needed for 2.35)

Outside the sphere the potential is
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Inside the sphere edge the field is
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Griffiths 2.35
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Clearly, the same, and correct value is obtained as a changes approachingoo. The surface integral just
balances the field squared volume integral fromr’' = ator’ =oo. Note: as in the discussion at the
bottom of page 91, the formula only works when ALL the charge is enclosed in the volume soa > Riis

required.

Griffiths 2.53

For a positive line charge (z-direction) of line density A, Gauss’s law gives
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where I is the distance from the line charge. By superposition, he total potential for the two line charges
is
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Curves of constant potential have constant argument of the logarithm. Thus
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Because K = EXp(47Z80¢ / l) , the radius and position of the center of each equipotential circle are
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When X is negative, the argument of the logarithm goes to 1/(the argument when X is positive). Clearly,
the potential reverses sign as it should.



